Course: EN-4151 APPLIED NAVAL ARCHITECTURE

Credits: 3

Semester: Spring 2016

Professor: F. Murray

Office: Room 222A Harrington

Text: Stability and Trim for the Ship's Officer

Prerequisite: EN 3112 - Strength of Materials

Office Hours:

Rm 222A Harrington, 1000 - 1100, or by appointment

Office phone: 508-830-5000 x 2031 Email: fmurray@maritime.edu

Grading: This course is an STCW knowledge-based assessment course requiring a minimum grade of C-, or 70%, for the semester grade. In accordance with the Engineering Department STCW grading policy, a grade lower than 70% receives an F for the course.

The semester grade will be assigned as follows: Quizzes (5%) Exam #1 (25%), Exam #2 (25%), Final exam (30%), Graded Homeworks (15%)

Attendance: If you are going to miss a class, please advise me prior to that class. The student is responsible for catching up with the material that was missed. A student missing 12 or more classes may be dropped from the course.

1. Quizzes: There will be no makeup of quizzes. Unexcused absences will receive a grade of zero for that quiz.

2. Cadets with disabilities: Students with documented disabilities will be afforded appropriate accommodations. Students requiring additional time on exams must make those arrangements with the instructor in advance.

Learning Outcomes:

Upon completion of this course, it is expected the Student:

- 1. Will be conversant with the basic nomenclature of ship structure and ship stability.
- 2. Will be able to use a ship's hydrostatic curves-of-form to calculate displacement and other initial stability information.
- 3. Will have a working knowledge of stability basics and the effect of load changes on stability. This includes use of hydrostatic curves of form and cross curves of stability.
- 4. Will have a working knowledge of how loading changes a ship's longitudinal trim and transverse list.
- 5. Will have a working knowledge of the causes and effects of stress on a ship's hull.
- 6. Will understand what structural hull loads are, and be able to calculate basic longitudinal hull stress for a simplified loading.
- 7. Will understand the importance of maintaining watertight integrity.
- 8. Will be able to estimate a ship's power requirement based on model test data.

STCW Learning Objectives

Demonstrate knowledge and understanding of the following STCW elements:

- <u>OICEW-C1.1</u> Characteristics and limitations of materials used in construction and repair of ships and equipment
- OICEW-C1.4 Methods for carrying out safe emergency/temporary repairs
- <u>OICEW-D2.1</u> Working knowledge and application of stability, trim and stress tables, diagrams and stress-calculating equipment
- OICEW-D2.2 Understanding of the fundamentals of watertight integrity
- OICEW-D2.3 Understanding of fundamental actions to be taken in the event of partial loss of intact buoyancy
- <u>OICEW-D2.4</u> General knowledge of the principal structural members of a ship and the proper names for the various parts

APPLIED NAVAL ARCHITECTURE - SPRING 2016

in p	- TOPIC	TEXT
1	Administrative issues. Nomenclature, Finding Areas P	
2	More nomenclature, molded form, dimensions P Finding Center of Area, Finding Center of Gravity Graded HW is assigned - Find Center of Gravity	
3	Relationships: Underwater volume, weight, specific weight Fluid weight, start Archimedes Principle	
4	Properties of the waterplane, properties of the immersed hull P,V Archimedes Principle	
5	Force of Buoyancy, center of buoyancy, ship's center of gravity, Also see "Block coefficient ratio" (see diagram on pg 72, text)	See pg 72
6	Forces are transmitted through the ship's structure. V, P Review of Area-Moment-of-Inertia, parallel axis theorem	
7	Intro to Hydrostatic Curves Tons per inch immersion P, V Class handout, plus see text pg 443 for another set-of-curves	Appendix A pg 443
8	Hull pressure forces, more parallel axis theorem P	
9	Righting moment (force x distance), righting arm (distance) Initial Transverse Stability at small angles, Intro. to Transverse Metacenter, M _T and Metacentric Height	Chap 2 pg 31-37 pg 40-46
10	Positive, neutral stability Pg 31 Text, Angle of Loll, pg 118 P	pg 31-46, start Chap 3
11	Load lines, vessel's Plimsoll mark. List, heel and loll P Why does a ship float?	
12	Intro to the Trim & Stability Booklet, KG, Lightship definition The effect of off-center weights Transverse Shifting of a Weight already onboard	pg 54 - 59
13	Using T.S. Kennedy Hydrostatic tables P,V Adding a weight, removing a weight	
14	Start Free Surface, Effect of Free Surface, Virtual rise in G V	Chap 6
15	Free Surface definitions, Noon report	
16	Free surface correction (FSC), example problem Basic structural nomenclature	
17	Characteristics and limitations of materials used in shipbuilding Review for exam	
Mon	EXAM #1 MONDAY 11 APRIL	
18	Return exams, Video- Sunken Ship Salvage - Start Patriot's Holiday	

Patriot's Holiday Thursday April 14th - Monday, April 18th.

Resume Nav Arch cla	s on Wedne	sday, 20 April.
---------------------	------------	-----------------

	STABILITY at LARGE ANGLES	1/4	Chap 7
19 W	Transverse Stability at large angles of heel,	P	pg 129-136
	Static Stability Curve, Assumed KG,		
	Intact Stability Criteria using Righting Arm curves		
20 F	Working knowledge and application of trim and stability		
	Graded HW is assigned: Trim & Stability calculations	P	

	LONGITUDINAL HULL STRENGTH		Chap 10
21 M	Ship Structure – static load, dynamic load.		pg 218 - 228
	Model the ship as a Box-Beam, Still Water		1
22 W	Flexure Formula, Video - Why ships Sink	V	pg 228
23 F	Framing Systems, transverse or longitudinal or combination Ship Strength - Weight curve, Buoyancy curve, Load curve	P	pg 229 - 238
24 M	Ship Strength curves - Barge example Weight per foot W(x), B(x), L(x) Shear Force V(x), Bending Moment Curve M(x)		pg 232 - 238
25 W	Ship Strength curves - Strength calculations		
26 F	Hull monitoring systems		

27 M	Section Modulus, Subdivision)	Handout
28 W	STCW codebook, Review for exam #2		
FRI	EXAM #2 FRIDAY 13 MAY		
	CG LICENSE EXAM WEEK 16 - 20 MAY NO CLASSES for ENTIRE WEEK		
29 M	Fundamentals of watertight integrity Understanding fundamental actions to be taken in the event of loss of intact stability	f	
30 W	RESISTANCE to the SHIP moving through the water Intro to Ship Resistance, 3 types of resistance Resistance to the ship as it moves through the water)	
31 F	Towing a model, Effective Horsepower (EHP) Use of models, Law of Corresponding speeds Ship Resistance and Modeling, scale factors		

32	Ship Propulsion, Horsepowers and basic drive trains P	,V
TUE	Hull speed **THIS DAY IS A "DEAN'S MONDAY"	*
33 W	Ship- model relationships,	
34 F	Ship propeller basics	P
35 M	Last day of class, review for final exam	