Course: EN-4151 APPLIED NAVAL ARCHITECTURECredits: 3Semester: FALL 2016Professor: F. MurrayOffice: Room 222A Harrington

Text: Stability and Trim for the Ship's Officer

Prerequisite: EN 3112 – Strength of Materials

Office Hours:

Rm 222A Harrington, 1100 - 1200, or by appointment Office phone: 508-830-5000 x 2031 Email: fmurray@maritime.edu

Grading: This course is an STCW knowledge-based assessment course requiring a minimum grade of C-, or 70%, for the semester grade. In accordance with the Engineering Department STCW grading policy, a *grade lower than 70% receives an F for the course.*

The semester grade will be assigned as follows: Quizzes (5%) Exam #1 (25%), Exam #2 (25%), Final exam (30%), Graded Homeworks (15%)

Attendance: If you are going to miss a class, please advise me prior to that class. The student is responsible for catching up with the material that was missed. A student missing 12 or more classes may be dropped from the course.

Notes

1. Quizzes: There will be no makeup of quizzes. Unexcused absences will receive a grade of zero for that quiz.

2. Cadets with disabilities: Students with documented disabilities will be afforded appropriate accommodations. Students requiring additional time on exams must make those arrangements with the instructor in advance.

Learning Outcomes:

Upon completion of this course, it is expected the Student:

1. Will be conversant with the basic nomenclature of ship structure and ship stability.

2. Will be able to use a ship's hydrostatic curves-of-form to calculate displacement and other initial stability information.

 Will have a working knowledge of stability basics and the effect of load changes on stability. This includes use of hydrostatic curves of form and cross curves of stability.
Will have a working knowledge of how loading changes a ship's longitudinal trim and transverse list.

5. Will have a working knowledge of the causes and effects of stress on a ship's hull.

6. Will understand what structural hull loads are, and be able to calculate basic longitudinal hull stress for a simplified loading.

7. Will understand the importance of maintaining watertight integrity.

8. Will be able to estimate a ship's power requirement based on model test data.

STCW Learning Objectives

Demonstrate knowledge and understanding of the following STCW elements:

- <u>OICEW-C1.1</u> Characteristics and limitations of materials used in construction and repair of ships and equipment
- <u>OICEW-C1.4</u> Methods for carrying out safe emergency/temporary repairs
- <u>OICEW-D2.1</u> Working knowledge and application of stability, trim and stress tables, diagrams and stress-calculating equipment
- <u>OICEW-D2.2</u> Understanding of the fundamentals of watertight integrity
- <u>OICEW-D2.3</u> Understanding of fundamental actions to be taken in the event of partial loss of intact buoyancy
- <u>OICEW-D2.4</u> General knowledge of the principal structural members of a ship and the proper names for the various parts

APPLIED NAVAL ARCHITECTURE – FALL 2010				
	TOPIC	TEXT		
1 W	Administrative issues. Nomenclature, Finding Areas P			
2 F	More nomenclature, molded form, dimensions P			
	Finding Center of Area, Finding Center of Gravity			
	Graded Homework "A" is assigned - Find Center of Gravity			
3 M	Relationships: Underwater volume, weight, specific weight P			
4	Properties of the waterplane, properties of the immersed hull P, V			
	Center of buoyancy, ship's center of gravity			
5	Force of Buoyancy, center of buoyancy, ship's center of gravity,	See pg 72		
	Archimedes Principle	10		
6 M	Forces are transmitted through the ship's structure. V, P			
•	Review of Area-Moment-of-Inertia, parallel axis theorem			
7	Intro to Hydrostatic Curves ,Tons per inch immersion P, V	Appendix		
,	Class handout, plus, see text pg 443, for another set-of-curves	A pg 443		
8	Hull pressure forces, more parallel axis theorem P			
0				
9 M	Righting moment (force x distance), righting arm (distance)	Chap 2		
<i>)</i> IVI	Initial Transverse Stability at small angles,	pg 31-37		
	Intro. to Transverse Metacenter, M_T and Metacentric Height	pg 40-46		
10				
10	Positive, negative stability Pg 31 Text, Angle of Loll, pg 118	pg 31- 46,		
11	Transverse shifting of weight already onboardPLoad lines vessel's Plimsoll markList roll and lollP	start Chap 3		
11				
	Why does a ship float?			
12 M	Intro to the Trim & Stability Dealdet VC Lightship definition	ng 54 50		
12 11	Intro to the Trim & Stability Booklet, KG, Lightship definition	pg 54 - 59		
13	The effect of off-center weights, Kennedy Hydrostatic tables			
13	Adding a weight, calculating angle of list, start Free Surface P, V More Free Surface, slack tank, Ship's six degrees of motion P	Char 9		
14	More Free Surface, slack tank, Ship's six degrees of motion P	Chap 8		
	MONDAY 10 OCT is a HOLIDAY - No class	Free Surface		
15W	Calculating a tank's free surface correction (FSC)			
	Class example problem			
16 F	Calculating a SHIP'S total Free Surface Corr. due to ALL tanks			
	Noon Report, Trim and Stability summary sheet			
17 M	Characteristics and limitations of materials used in shipbuilding			
	Review for exam #1			
Wed	EXAM #1 WEDNESDAY 19 OCTOBER			
18F	Return exams, Video Sunken Ship Salvage			
		1		

APPLIED NAVAL ARCHITECTURE – FALL 2016

	STABILITY at LARGE ANGLES	Chap 7
19 M	Transverse Stability at large angles of heel, P	pg 129-136
	Static Stability Curve, Assumed KG	
	Intact Stability Criteria using Righting Arm Curves	
20 W	Working Knowledge and application of trim and stability	
	Graded HW "B" is assigned: Trim & Stability calculations	
21F	LONGITUINDAL HULL STRENGTH	Chap 10
	Ship structure - static load, dynamic load	pg 218 - 228
	Model the ship as a box-beam,	

22 M	Flexure Formula, Video - Why ships Sink V	pg 228
23 W	Framing Systems, transverse or longitudinal or combination P	pg 229 - 238
	Ship Strength - Weight curve, Buoyancy curve, Load curve	
24 F	Ship Strength curves: Barge example	pg 232 - 238
	Weight per foot $W(x)$, $B(x)$, $L(x)$ P	
	Shear force $V(x)$, Bending Moment Curve $M(x)$	
25 M	Ship Strength curves - Strength calculations	
	Graded HW "C" is assigned: Strength curves	
26 W	Hull Stress Monitoring, intro to Section Modulus P	
27 TH	THURSDAY, 10 NOV is a DEAN'S FRIDAY	
	Tonnage, Subdivision, STCW code	
	FRIDAY, 11 NOV is a holiday, Veteran's Day	
28 M	RESISTANCE to the SHIP moving through the water	
	Intro to Ship Resistance, 3 types of resistance P	
29 W	Towing a model, Effective Horsepower (EHP) P	
	Use of models, Law of Corresponding speeds	
	Ship Resistance and Modeling, scale factors	
30 F	Ship - Model relations, Ship propulsion horsepowers and basic	
	drive train, review for exam #2 P, V	
Mon	EXAM #2 MONDAY, 21 NOV	
	THANKSGIVING BREAK	

31 M	Nav Arch (guest speaker)	
28Nov	Flooding at sea, car carrier, Watertight bulkheads	
32W	STCW codebook, understanding fundamental actions to be taken	
	in the event of loss of intact stability	
33 F	CG Exam questions - Calculations	
34 M	Nav Arch (guest speaker)	
35W	Leadership & Mngt	
36 F	Ship propeller basics	
37 M	Miscellaneous	
38W	14 Dec, Last day of classes, review for Final Exam	