Course: EN-4151 APPLIED NAVAL ARCHITECTURE Credits: 3 Semester: Fall 2012 **Professor**: F. Murray

Office: Room 222A Harrington

Text: Stability and Trim for the Ship's Officer

Prerequisite: EN 3112 – Strength of Materials

Office Hours:

Rm 222A Harrington, 1000 - 1050, or by appointment Office phone: 508-830-5000 x 2031 Email: fmurray@maritime.edu

Grading: Grades will be assigned as per the Engineering Department STCW grading policy. This course is an STCW knowledge-based assessment course requiring a minimum grade of C-, or 70%, for the semester grade.

Note: A grade lower than 70% receives an F for the course.

The semester grade will be assigned as follows: Quizzes (5%) Exam #1 (30%), Exam #2 (30%), Final exam (35%)

Attendance: If you are going to miss a class, please advise me prior to that class. The student is responsible for catching up with the material that was missed. A student missing 12 or more classes may be dropped from the course.

Notes

1. Quizzes: There will be no makeup of guizzes. Unexcused absences will receive a grade of zero points for that quiz.

2. Cadets with disabilities: Students with documented disabilities may be afforded appropriate accommodations. Students requiring additional time on exams must make those arrangements with the instructor in advance.

Learning Outcomes:

Upon completion of this course, it is expected the Student:

1. Will be conversant with the basic nomenclature of ship structure and ship stability.

2. Will be able to use a ship's hydrostatic curves-of-form to calculate displacement and initial stability information.

3. Will have a working knowledge of stability basics and the effect of load changes on stability. This includes use of hydrostatic curves of form and cross curves of stability. 4. Will have a working knowledge of load changes on a ship's longitudinal trim and transverse list.

5. Will have a working knowledge of the causes and effects of stress on a ship's hull.

6. Will understand what structural hull loads are, and be able to calculate basic longitudinal hull stress for simplified loads.

7. Will understand the importance of maintaining watertight integrity.

8. Will be able to estimate a ship's power requirement based on model test data.

Class #	Topic	Text
1	Administrative issues. Nomenclature, Finding Areas, Centers	
2	More nomenclature, molded form, dimensions	Chap 2
	Finding Center of Area	pg 31 - 36
	Fundamental Ship Hull Form	
3	Relationships: Underwater volume, weight, specific weight	
	Fluid weight, Archimedes Principle	
4	Properties of the waterplane, properties of the immersed hull	
5	Basic hull pressure forces, Force of Buoyancy,	See pg 72
	See top of page 72, Block coefficient ratio	
6	Intro to Hydrostatic Curves - see Appendix A, pg 443	Appendix A
7	More Hydrostatic Curve information, Tons per inch immersion,	pg 443
	Intro to Area Moment of Inertia	
8	Pressure forces, Introduce KGB, Parallel axis equation	
9	Flotation & Initial Transverse Stability at small angles,	Chap 2
	Intro. to Transverse Metacenter, M_T ,	pg 36, 37
	Metacentric Height (GM _t)	pg 40-46
10	Coloritation contant of consister	pg 89 Rolling
10	Calculating center of gravity	Chap 3
	RG, Light Ship definition, Righting Arm	
11	Positive, neutral stability Pg 42, 43 Text	middle of
11	Area Moment of merua - for rectangular shaped waterplane	na 73
12	Intro to the Trim & Stability Pooklat	pg 73
12	The affect of off center weights	
	Transverse Shifting of a Weight already onboard	ng 54 57
13	Using Hydrostatic tables	pg 54 - 57
15	More shifting of a weight	
	Submarines - how do they work (Handout)	
Fri 5 Oct	No class (instructor away)	
Mon 9 Oct	Columbus Day - No class	
14	Adding a weight removing a weight	Chap 6
15	Start Free Surface Inclining Experiment	Chap 8
16	Effect of Liquids with Free Surface	
10	Virtual rise in G reduction in Metacentric Height	Chap 8
	Free Surface Correction (FSC)	Cimp 0
17	Free Surface Correction example prob	Chap 8
	Basic structural nomenclature (handout)	Surp 5
18	Flooding at sea (Car Carrier). Tonnage terms	
Mon	EXAM #1 (approximately Mon. 22 OCT)	

APPLIED NAVAL ARCHITECTURE – FALL 2012

	STABILITY at LARGE ANGLES	Chap 7
19	Return exam, Voyager of the Seas part 2	
20	Transverse Stability at large angles of heel, Static Stability Curve	

	LONGITUDINAL HULL STRENGTH	Chap 10
21	Ship Structure – major structural pieces,	pg 221 - 228
	Model the ship as a Box-Beam	
22	Structural framing systems	pg 228
	Flexure Formula	
23	More on Framing systems	pg 229 - 238
	Stresses on a ship (power pt)	
	Ship Strength - Weight curve, Buoyancy curve, Load curve	
24	Ship Strength curves; Weight per foot $W(x)$, $B(x)$, $L(x)$	pg 229 - 238
	Barge example	
25	Shear Force $V(x)$, Bending Moment Curve $M(x)$	
26	STCW discussion, STCW codebook, CG exam questions	
27	Section Modulus, Subdivision – Watertight bulkheads	Handout
28	Drydocking	
29	Review for exam	

Mon	EXAM #2 (approximately Mon., 19 Nov)	
	THANKSGIVING BREAK	
30	Resume classes Monday 26 Nov - Voyager of the Seas part 3	
	RESISTANCE to the SHIP – DETERMINING	
	A SHIP'S POWER REQUIREMENTS.	
31	Intro to Ship Resistance	
	Resistance to the ship as it moves through the water	
	3 types of resistance	
32	Towing a model, Effective Horsepower (EHP)	
	Use of models, Law of Corresponding speeds	
	Ship Resistance and Modeling, scale factors	
33	Ship Propulsion, Horsepowers and basic drive trains	
	Types of hulls	
34	Ship propeller basics	
35	Design project details - Friday 7 Dec	
36	Design project	
37	Test of your design project - Wed 12 Dec	
38	Review for final exam	