Mechanics Exam 1 Review

Tools you need in your toolbox:

1. Algebra, Geometry, Trig

Triangle Facts
Common triangles (3-4-5, $1-2-\sqrt{3}, 1-1-\sqrt{2}$)
SOH-CAH-TOA
Pythagorean Theorem
Law of Sines
Law of Cosines

2. Vectors

Magnitude and direction
Components in a given direction
Rectangular Components (usually x and y components.)
Vector addition by
Parallelogram Rule
Triangle Rule
Tip-to-tail Method
Addition of rectangular components
Convert from Magnitude and Direction to components, and vice-versa
Express a vector in writing

3. Equilibrium of a Particle

Free Body Diagrams
Vector solution: Force Triangle
Set up and solve equilibrium equations $\Sigma F_{x}=0$ and $\Sigma F_{y}=0$
Multi-particle equilibrium

4. Moments

Definition of a Moment: $F d_{\perp}$ or $F_{\perp} d$
Definition of Perpendicular Distance d_{\perp} and Perpendicular Component F_{\perp}
Sign Convention for Moments
Verignon's Theorem
Add Moments to find resultant moment
Balance moments to achieve rotational equilibriu m

1. The 600 N force applied to the bracket at A is to be replaced by two forces, F_{a} in the $a-a$ direction , and F_{b} in the $b-b$ direction, which together produce the same effect on the bracket as the 600 N force. Determine F_{a} and F_{b}.

2. If the three forces acting on the bracket are held in equilibrium by a 600 N force directed along the negative u axis, determine the magnitude of \mathbf{F}_{1} and its direction ϕ.

3. Determine the range of values for P for which the resultant of the three forces applied at A does not exceed 225 lb .

4. The handle of the hammer is subjected to force $F=20 \mathrm{lb}$. Determine the moment of this force about point A using two different methods and show that they produce the same result.

5. Determine the magnitude and direction of equilibrium force $F_{A B}$ exerted along link $A B$ by the patient using the tractive apparatus shown. The suspended mass is 10 kg . Neglect the size of the pulleys.

