RIGHT TRIANGLES	c b	Pythagorean Theorem	$a^2 + b^2 = c^2$	
	Trigonometric Ratios y O Trigonometric Ratios	Sine	$\sin \theta = \frac{y}{r} = \frac{\text{opposite side}}{\text{hypotenuse}}$	
		Cosine	$\cos \theta = \frac{x}{r} = \frac{\text{adjacent side}}{\text{hypotenuse}}$	
		Tangent	$\tan \theta = \frac{y}{x} = \frac{\text{opposite side}}{\text{adjacent side}}$	
		Cotangent	$\cot \theta = \frac{x}{y} = \frac{\text{adjacent side}}{\text{opposite side}}$	
		Secant	$\sec \theta = \frac{r}{x} = \frac{\text{hypotenuse}}{\text{adjacent side}}$	
		Cosecant	$\csc \theta = \frac{r}{y} = \frac{\text{hypotenuse}}{\text{opposite side}}$	
	Reciprocal Relations	(a) $\csc \theta = \frac{1}{\sin \theta}$	(b) $\sec \theta = \frac{1}{\cos \theta}$	$(c) \cot \theta = \frac{1}{\tan \theta}$
	A and B are Complementary Angles A	Cofunctions	(a) $\sin A = \cos B$ (b) $\cos A = \sin B$ (c) $\tan A = \cot B$	(d) $\cot A = \tan B$ (e) $\sec A = \csc B$ (f) $\csc A = \sec B$
COORDINATE SYSTEMS	P(x, y) $O x x$	Rectangular	$x = r\cos\theta$	
			$y = r \sin \theta$	
		Polar	$r = \sqrt{x^2 + y^2}$	
			$\theta = \arctan \frac{y}{x}$	
ANY TRIANGLE	Areas a b c b	$Area = \frac{1}{2}bh$		
		Hero's Formula: $Area = \sqrt{s(s-a)(s-b)(s-c)} \text{where} s = \frac{1}{2}(a+b+c)$		
	c Ba A C	Sum of the Angles	$A + B + C = 180^{\circ}$	
		Law of Sines	$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$	
		Law of Cosines	$a^{2} = b^{2} + c^{2} - 2bc \cos A$ $b^{2} = a^{2} + c^{2} - 2ac \cos B$ $c^{2} = a^{2} + b^{2} - 2ab \cos C$	
	A θ	Exterior Angle	$\theta = A + B$	
SIMILAR	If two angles of a triangle equal two angles of another triangle, the triangles are similar.			
	Corresponding sides of similar triangles are in proportion.			

Basic Rules of Algebra for real numbers

Assume a, b, c, d are real numbers and that m, n are positive integers.

Commutativity a+b=b+a $a\cdot b=b\cdot a$

Note: a + a = 2a $a \cdot a = a^2$

Associativity a + (b + c) = (a + b) + c $a \cdot (b \cdot c) = (a \cdot b) \cdot c$

Distributive law a(b+c) = ab + ac

Note: (a + b)(c + d) = (a + b)c + (a + b)d = ac + bc + ad + bd

Factoring Special Polynomials:

Perfect Squares $a^2 - 2ab + b^2 = (a - b)^2$ $a^2 + 2ab + b^2 = (a + b)^2$

Difference of Squares $a^2 - b^2 = (a - b)(a + b)$

Difference/Sum of Cubes $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$ $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$

Binomial Equation $(a+b)^n = \sum_{r=0}^n \binom{n}{r} a^{n-r} b^n \text{ where } \binom{n}{r} = \frac{n!}{(n-r)!r!} \text{ and } m! = m(m-1) \dots 1 \text{ also } 0! = 1$

Identities and Inverses a+0=a=0+a $a\cdot 1=a=1\cdot a$

a + (-a) = 0 = (-a) + a $a \cdot \left(\frac{1}{a}\right) = 1 = \left(\frac{1}{a}\right) \cdot a, a \neq 0$

Fractions $\frac{a}{b} + \frac{c}{d} = \frac{ad}{bd} + \frac{bc}{bd} = \frac{ad+bc}{bd} \qquad \qquad \frac{a}{b} \cdot \left(\frac{c}{d}\right) = \frac{ac}{bd}$

 $\frac{a}{b} + \frac{c}{b} = \frac{a+c}{b}$ $\frac{a}{b} \cdot \left(\frac{c}{b}\right) = \frac{ac}{b^2}$

 $a + \frac{b}{c} = \frac{ac}{c} + \frac{b}{c} = \frac{ac+b}{c}$ $a \cdot \left(\frac{b}{c}\right) = \frac{a}{1} \cdot \left(\frac{b}{c}\right) = \frac{ab}{c}$

 $\frac{a}{b} - \frac{c}{d} = \frac{a}{b} + \frac{-c}{d} = \frac{ad - bc}{bd}$ $\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} = \frac{ad}{bc}$

Exponents $a^0 = 1, a \neq 0$ $0^a = 0, a \neq 0$

 $\underbrace{a \cdot a \cdot \dots \cdot a}_{m \text{ times}} = a^m \qquad \qquad a^{\frac{1}{m}} = \sqrt[m]{a}$

 a^b is well defined when a and b are not both 0

(in other words 0^0 is not well defined for the purposes of 1^{st} and 2^{nd} year math courses)

 a^b is a complex number if a<0 and $b=m\left(\frac{1}{2^n}\right)$

(in other words the even root of a negative number is not a real number)

 $a^b \cdot a^c = a^{b+c}$ $\frac{a^b}{a^c} = a^{b-c} \qquad (a^b)^c = a^{bc}$

 $(ab)^c = a^c \cdot b^c \qquad \qquad \left(\frac{a}{b}\right)^c = \frac{a^c}{b^c} \qquad \qquad \left(\frac{a}{b}\right)^{-c} = \frac{a^{-c}}{b^{-c}} = \frac{b^c}{a^c} = \left(\frac{b}{a}\right)^c$

 $a^b + a^b = 2a^b$ but $a^b + a^c$ and $a^b + c^b$ cannot be simplified

Logarithms If $a = b^c$ then $c = \log_b a = \frac{\ln a}{\ln b}$, b > 0 and $b \ne 1$.

 $\log_b b^c = c \qquad \qquad \log_b (a^c) = c \log_b a$

 $\log_b(ac) = \log_b a + \log_b c$ $\log_b \left(\frac{a}{c}\right) = \log_b a - \log_b c$

 $\log_h(a+a) = \log_h(2a)$ but $\log_h(a+c)$ cannot be simplified