5. Determine the magnitude and direction of equilibrium force $F_{A B}$ exerted along link $A B$ by the patient using the tractive apparatus shown. The suspended mass is 10 kg . Neglect the size of the pulleys.

$$
T=m g=10 \mathrm{~kg}\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=98.1 \mathrm{~N}
$$

SOLUTION

Analysis of the free body diagram of point A and the geometry of the problem will give a solution without a calculator.
$F_{A B}$ is equal and opposite to R, the sum of the two tensions acting on point A. The parallelogram

is made up of two equilateral triangles, so $R=T$ and T acts $15^{\circ} \mathrm{CW}$ from the positive x axis.

$$
F_{A B}=98.1 \mathrm{~N} @-15^{\circ}
$$

